5w^2=676

Simple and best practice solution for 5w^2=676 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5w^2=676 equation:



5w^2=676
We move all terms to the left:
5w^2-(676)=0
a = 5; b = 0; c = -676;
Δ = b2-4ac
Δ = 02-4·5·(-676)
Δ = 13520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13520}=\sqrt{2704*5}=\sqrt{2704}*\sqrt{5}=52\sqrt{5}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-52\sqrt{5}}{2*5}=\frac{0-52\sqrt{5}}{10} =-\frac{52\sqrt{5}}{10} =-\frac{26\sqrt{5}}{5} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+52\sqrt{5}}{2*5}=\frac{0+52\sqrt{5}}{10} =\frac{52\sqrt{5}}{10} =\frac{26\sqrt{5}}{5} $

See similar equations:

| 400=a2 | | t=3+(5-1)2 | | 23x-15=12x-15 | | 0.75(x+20)=2+0.5(x−2 | | 6={x}{3}+4 | | 5(-8-3)/2-2y=-1 | | 15b-40=14b+10 | | 7+16w=11 | | 1+14x=9x-24 | | 4(2x-5)=2(4x+10) | | 8-2(3-2)=14-x | | 2=10–4y | | -13n-4n-2=16 | | b-3÷5=2 | | 45=19-2n | | 8n-3=7n+13 | | 9x-22=58 | | 6-13x=-9x-18 | | 17s−14s=18 | | 1-2x=-(2x1) | | 3p-8=13-4p | | 3r+–19r+19r=18 | | 3k+4K-3k-2k-k+1=4 | | 75x+100=350+25x | | -0.6x+1.8=1.38 | | (9x-2)+(3x−19)+(3x+6)=180 | | 5x+3=5x- | | 8/7=9/z | | 34=d=16 | | b÷4+5=20 | | 9x−5x+18=2x+34 | | 3c+1c+2=3c+9 |

Equations solver categories